Lecture 6 on Sept. 26

In the lecture today, we begin to study the so-called rational functions.
Definition 0.1. Given two polynomials $P(z)$ and $Q(z)$,

$$
R(z)=\frac{P(z)}{Q(z)}
$$

is called a rational function.

Here are some remarks that we should have to know
Remark 0.2. If $R_{1}(z)$ and $R_{2}(z)$ are two rational functions, then $R_{1} \pm R_{2}, R_{1} R_{2}, R_{1} / R_{2}$ are also rational functions. Moreover if we assume $R(z)=P(z) / Q(z)$, then by quotient rule

$$
R^{\prime}(z)=\frac{Q P^{\prime}-P Q^{\prime}}{Q^{2}}
$$

which is still a rational function.

Remark 0.3. By the fundamental theorem of algebra, we can factorize $P(z)$ and $Q(z)$ as follows

$$
P(z)=c_{1} \Pi_{k=1}^{m}\left(z-\alpha_{k}\right), \quad Q(z)=c_{2} \Pi_{j=1}^{n}\left(z-\beta_{j}\right)
$$

Therefore

$$
\begin{equation*}
R(z)=\frac{P(z)}{Q(z)}=\frac{c_{1}}{c_{2}} \frac{\Pi_{k=1}^{m}\left(z-\alpha_{k}\right)}{\Pi_{j=1}^{n}\left(z-\beta_{j}\right)} \tag{0.1}
\end{equation*}
$$

Applying cancellation to the above quotient, we know that we can always assume α_{k} are different from β_{j}. In other words

$$
\left\{\alpha_{k}: k=1, \ldots, m\right\} \bigcap\left\{\beta_{j}: j=1, \ldots, n\right\}=\emptyset
$$

before proceeding, let us study how to write a rational function into the sum of partial fractions. One should only follow the guideline below.

Step 1. Assuming $R(z)=P(z) / Q(z)$, we use long division to rewrite $R(z)$ as

$$
\begin{equation*}
R(z)=G(z)+H(z) \tag{0.2}
\end{equation*}
$$

here $G(z)$ is a polynomial while $H(z)$ is a real (proper) rational function. Here we mean a rational function proper if the order of the nominator polynomial is smaller than the order of the denominator polynomial. Notice that if H is proper then $H(\infty)=0$;

Step 2. Assuming $\beta_{1} \ldots \beta_{n}$ are n distinct roots of the polynomial Q, we consider the rational function $H\left(\beta_{j}+\frac{1}{w}\right)$ for each $j=1, \ldots, n$. If $H(z)$ is proper in terms of variable z, then $H\left(\beta_{j}+\frac{1}{w}\right)$ must not be proper in terms of variable w. Therefore we can do long division for $H\left(\beta_{j}+\frac{1}{w}\right)$ and show that

$$
\begin{equation*}
H\left(\beta_{j}+\frac{1}{w}\right)=G_{j}(w)+H_{j}(w) \tag{0.3}
\end{equation*}
$$

where G_{j} is a polynomial of w and H_{j} is a proper rational function. Using this G_{j} and G from the first step, we can write

$$
R(z)=G(z)+\sum_{j} G_{j}\left(\frac{1}{z-\beta_{j}}\right)+C
$$

where C is a constant. This is the so-called sum of partial fractions for $R(z)$.
Step 3. Now we determine the constant C. Since G_{j} in Step 2 is a polynomial, then it has a constant term denoted by $C\left(G_{j}\right)$. C equals to $-\sum_{j} C\left(G_{j}\right)$.

In fact, by Remark 0.2, we know that

$$
\tilde{R}(z)=R(z)-G(z)-\sum_{j} G_{j}\left(\frac{1}{z-\beta_{j}}\right)
$$

must be a rational function. when $z \neq \beta_{j}$ for all $j=1, \ldots, n$, then $R(z), G(z)$ and $G_{j}\left(1 /\left(z-\beta_{j}\right)\right)$ are all finite complex numbers. Therefore $\tilde{R}(z)$ is finite. Letting β be one of complex numbers in $\left\{\beta_{j}\right\}$, then by (0.2) we know that

$$
\begin{equation*}
\tilde{R}(\beta)=H(\beta)-G_{j^{*}}\left(\frac{1}{\beta-\beta_{j^{*}}}\right)-\sum_{j \text { such that } \beta_{j} \neq \beta} G_{j}\left(\frac{1}{\beta-\beta_{j}}\right) \tag{0.4}
\end{equation*}
$$

Here j^{*} is the index such that $\beta_{j^{*}}=\beta$. Supposing that $z=\beta_{j^{*}}+1 / w$, by (0.3), we have

$$
H(z)=G_{j^{*}}\left(\frac{1}{z-\beta_{j^{*}}}\right)+H_{j^{*}}\left(\frac{1}{z-\beta_{j^{*}}}\right)
$$

Clearly it holds

$$
H(\beta)-G_{j^{*}}\left(\frac{1}{\beta-\beta_{j^{*}}}\right)=H_{j^{*}}\left(\frac{1}{\beta-\beta_{j^{*}}}\right)
$$

Since $H_{j^{*}}$ is proper, therefore we have

$$
H_{j^{*}}\left(\frac{1}{\beta-\beta_{j^{*}}}\right)=H_{j^{*}}(\infty)=0
$$

Applying the above two equalities to (0.4), we know that \tilde{R} is also finite at β. Therefore \tilde{R} is a rational function such that $\tilde{R}(z)$ is finite for all z in \mathbb{C}. Such rational function can only be a polynomial. Furthermore by the fact that

$$
\tilde{R}(z)=H(z)-\sum_{j} G_{j}\left(\frac{1}{z-\beta_{j}}\right)
$$

we know that at ∞,

$$
\tilde{R}(\infty)=H(\infty)-\sum_{j} G_{j}(0)=-\sum_{j} G_{j}(0)
$$

Here the fact that H is proper is used. The above arguments show that \tilde{R} is a polynomial and must be finite at ∞. Such polynomial can only be a constant. Up to now we have shown that

$$
R(z)=G(z)+\sum_{j} G_{j}\left(\frac{1}{z-\beta_{j}}\right)+C
$$

Applying (0.2) to the above equality, we know that

$$
H(z)=\sum_{j} G_{j}\left(\frac{1}{z-\beta_{j}}\right)+C
$$

Therefore by the fact that H is proper, we have

$$
0=H(\infty)=\sum_{j} G_{j}\left(\frac{1}{\infty}\right)+C=\sum_{j} G_{j}(0)+C=\sum_{j} C\left(G_{j}\right)+C
$$

where $C\left(G_{j}\right)$ is the constant term of the polynomial G_{j}. Hence it follows that

$$
C=-\sum_{j} C\left(G_{j}\right)
$$

